Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21460, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439502

RESUMEN

Abstract Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) hematite, Fe2+, and Fe3+ with large Δ/2ξq of about 2.80 and 2.69 mm.s-1 respectively, related to iron silicates, most likely pyroxene, and a superparamagnetic Fe3+. Pink clay exhibits poor flow properties. The thermal behavior indicates a phase-transition between 400 - 600 ºC associated with the dehydroxylation of the pink clay system requiring ~300 kJ mol-1, being constant until the process reaches a conversion of ~50% when the energy is enhanced to ~530 kJ mol-1, concluding the whole dehydroxylation process (α=80%). Solid-state properties and characteristics found for the pink clay must be considered for the proper design of formulations. This type of clay shows unique pharmaceutical properties that can be favorably exploited by the cosmetic industry


Asunto(s)
Brasil/etnología , Arcilla/clasificación , Polvos/análisis , Caolín/farmacología
2.
J Food Sci Technol ; 59(2): 805-814, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35185192

RESUMEN

Safflower oil (SO) is mainly rich in linoleic acid (ω-6), oleic acid (ω-9), and other bioactives with potential antioxidant, antidiabetic, thermogenic, anti-inflammatory, cardioprotective and anticancer activities. The reduced aqueous solubility and high susceptibility to oxidative degradation are undesirable for food applications and can be overcome by incorporation in lipid nanoparticles. Thus, the main goal was to develop and characterize SO-loaded nanostructured lipid carriers (NLC-SO) and to evaluate their potential for protection of the antioxidant activity of the bioactive. NLC-SO showed average size of 222 ± 2.0 nm, zeta potential of  43 ± 3.5 mV and the encapsulation efficiency was 49.0 ± 2.8%, combined with high thermal compatibility (up to 228 °C) and physical stability for up to 60 days in aqueous dispersion. Besides, the NLC-SO showed threefold reduction in the DPPH radical scavenge activity after encapsulation, indicating protection of the antioxidant components of the SO and preservation of the bioactives. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05078-5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...